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The theory of wave action conservation is summarized, and its interpretation in 
terms of the working, against the rate of strain of the basic flow, of an interaction 
stress associated with the waves is discussed. Usually this interaction stress is 
identical with the radiation stress of a uniform plane wave. The problem of 
internal gravity wave propagation in an incompressible, stratified Boussinesq 
liquid is considered in detail for a more general basic flow than has hitherto 
been treated, and the interaction stress is derived. One component of the inter- 
action stress tensor is only equal to the corresponding component of the radiation 
stress tensor if we include in the latter, in addition to the Reynolds stress, a term 
associated with the redistribution of matter, on the average, by the wave. Two 
other components of the radiation stress tensor are modified in a similar 
manner, but the corresponding components of the interaction stress tensor are 
undefined, and so no comparison is possible. 

1. Introduction 
Considerable attention has been given to the problem of the propagation of 

non-dissipative dispersive hydrodynamic waves of small amplitude in inhomo- 
geneous media in non-uniform mean motion. A simplifying assumption of great 
use and wide validity is that the time and length scales of the basic flow are 
much greater than the period and wavelength of the waves. Particular problems 
investigated with this assumption are those of the propagation of surface 
water waves on a varying current (Longuet-Higgins & Stewart 1961, 1964; 
Whitham 1962) and sound waves in a non-uniform moving medium (Blokhintsev 
1946). Bretherton (1966) and Hines & Reddy (1967) consider the propagation 
of internal gravity waves in a simple shear flow and discuss the meteorological 
importance of this. It is with an extension of this problem and interpretation 
of the results that this paper is mainly concerned. 

The way in which the wave-number and frequency of a wave-train change along 
well-defined paths is well known, and is discussed, for example, by Bretherton & 
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Garrett (1968). The frequency w and wave-number k are derived, as functions 
of position x and time t ,  from a phase function e(x, t )  by 

w = -ao/at, k = vo. (1.1) 

w, k are connected by the dispersion relation 

w = Q(k,h),  

where h(x, t )  is a parameter involving the local properties of the medium. Then 
changes in w ,  k are governed by 

aw aaah  aki aoah 
at ah at at ah axi’ (1.3) -=-- -=--- 

where 
a a  & = % + C . V  

and c is the group velocity, defined by 

ci = a q a k i .  (1.4) 

However, until recently there seemed to be no general result governing 
changes in the amplitude of the waves. In  media basically a t  rest, it  was generally 
known that the amplitude might be derived from conservation of the energy of 
a wave packet. Thus, if E denotes the energy density, related to the square of the 
amplitude, then changes in amplitude are governed by the equation 

dE/dt + E V .  c = 0. (1.5) 

In  the presence of a non-uniform basic flow it was recognized in many cases 
that the energy of a wave packet is affected by an interaction with the mean 
flow, and no general result was known. However, the problem is of such a clear- 
cut and general nature that the existence of a simple general answer might have 
been suspecked. Such an answer has now been found. Based on work by Whitham 
(1965), it  was suggested by Garrett (1967) and proved by Bretherton & Garrett 
(1968) and Bretherton (1968) that, for a wave packet in a moving and/or time- 
dependent medium, wave action (defined as wave energy divided by the wave 
frequency relative to the basic flow) is conserved. Thus the energy equation 
becomes 

at d(E)+%v.c=o, w’ 0 

where w‘ = w - U. k is the frequency of the waves measured in a frame of 
reference moving with the local mean velocity U of the medium. The wave- 
energy density E is also measured in this frame of reference. Equation (1.5) is 
now a special case of (1.6) for wave propagation in a stationary time-independent 
medium, for which w = w’ and dw/dt = 0. 

If the dispersion relation of the waves relative to the medium is 

W’ = Q’(k,h’(x, t ) ) ,  (1.7) 

then w = U.  k + w’ has U and A‘ as components of the parameter h occurring in 
(1.2). Thus aw au, miax 

z = k j x + m t  (1.8) 



and 

Hence 

where 
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(1.9) 

(1.10) 

and c:: = ci- ui = a a / a k i .  
Changes in w' given by (1.10) mean that a wave packet is exchanging energy 

with the mean flow. The way in which this energy exchange may be interpreted 
in terms of the rate of working, against the rate of strain of the basic flow, of an 
'interaction stress' associated with the waves, is discussed in $3. Usually the 
identification ofthisinteraction stress is straightforward. For example, for surface 
gravity waves it may be shown (Bretherton & Garrett 1968) that the conserva- 
tion of wave action is equivalent to the energy equation of Longuet-Higgins & 
Stewart (1964). Thus our interaction stress is the same as their radiation stress, 
which is just the second-order mean momentum flux for a uniform plane wave, 
and is composed of the Reynolds stresses plus the second-order mean pressure. 

However, consideration of the propagationof internal gravity waves in a more 
general basic flow than was taken by Bretherton (1966) or Hines & Reddy (1967) 
leads to a slightly unexpected term in the interaction stress. This, and the way in 
which it may be identified with a contribution to the radiation stress, will be 
discussed later, but, before turning to the energy exchange in general, and for 
internal gravity waves in particular, it  seems worthwhile to give a summary of 
the derivation of wave action conservation. 

2. Wave action conservation 
Whitham (1965) assumed that the Eulerian equations of motion governing a 

system which can support non-linear plane waves can be derived from a vari- 
ational principle 

where L is a function of certain potentials describing the problem and their 
derivatives, d V is an element of volume and dt an element of time. Whitham 
then considered a slowly varying wave-train and assumed that the behaviour of 
this could be derived from an ' averaged variational principle ' 

G p d v a t  = 0, (2.1) 

GJ2dVdt = 0, (2.2) 
where2 is the time average of L over a local period. 

Whitham's emphasis was on non-linear waves, but he also considered the 
implications of his theory for the linearized case, i.e. for small amplitude waves 
on a stationary basic state. 

where u is the amplitude, w the frequency and k the wave-number. As before h 
is a parameter involving the local properties of the medium. 9 is proportional to 

(2.4) 
u2 and given by 

In this case 9 = 2(., W ,  k; A) ,  (2.3) 

9 = a(@, k; h)a2. 
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The averaged variational principle then gives 

G = O  (2.5) 

from variation of a, and so 9 = 0. Equation (2 .5)  must be the local dispersion 
relation, equivalent to (1.2) here. Prom variation of the phase function 8, 
Whitham obtained 

But the group velocity c is given by 

and so (2.6) becomes d9,ldt -I- 9,v. c = 0. (2.8) 

Whitham also pointed out that, as a consequence of Noether’s theorem in the 
calculus of variations, then 

a a 
- ( 0 9 , - 9 ) - - ( w 9 k i )  = 0 
at axi (2-9) 

if9 has no explicit dependence on t. ~9~ -9 is thus identified with the energy 
density E ,  and -upk, with the energy flux. Thus, a s 9  = 0, 

9, = Elm, (2.10) 

though this was not explicitly stated by Whitham, and (2.8) gives the conserva- 
tion of wave action €or small amplitude waves propagating in a non-uniform 
and time-dependent, but stationary, medium. Garrett ( 1967) pointed out that 
a way to change the ‘intrinsic’ frequency of a wave packet, other than by having 
the medium stationary but time dependent, is to allow the waves to propagate 
in a medium in non-uniform mean motion. Hence one is led to suspect that 
conservation of wave action, as described by (1.6), might be a general result. 

In  certain particular examples Whitham stated what his Lagrangian L is, 
and justified the use of the averaged variational principle, but, for the rigorous 
justification of wave action conservation for the time-dependent and moving- 
media problems, several extensions and modifications needed to be made. These 
have been carried out by Bretherton & Garrett (1968) and Bretherton (1968) 
in the manner outlined below. 

On the basis of work by Eckart (1963), a form of Hamilton’s principle is ob- 
tained for small perturbations about a state of motion which is itself a solution 
of the equations of motion. Eckart’s principle is based on that due to Herivel 
(1955) and is valid for any inviscid, adiabatic, compressible, unbounded fluid in 
a gravitational field. This is extended to include conservative lateral boundary 
conditions (as is necessary for surface water waves, for example), and to allow 
for incompressibility. If the fluid is perfectly conducting, then the effects of a 
frozen-in magnetic field may be included, as in the variational principle of Lund- 
gren (1963). The important difference between this and Whitham’s approach is 
that by dewribing the motion in terms of the particles (a Lagrangian description) 
instead of positions in space (an Eulerian description) it is possible to say exactly 
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what the variational principle is, namely Hamilton’s principle, and the La- 
grangian, L, can easily be written down. 

Allowing for the possibility of lateral co-ordinates, Bretherton (1968) 
derives the averaged variational principle, where 9 is obtained from L by 
integration over the lateral co-ordinates as well as averaging over a period. The 
conservation of 9@ in the sense of (2.8) then follows as before, but this still has 
to be identified with Elo’. 

If there exists a frame of reference with respect to which the medium is locally 

at  rest, then E = ~ ‘ 9 ~ r - 9  (2.11) 

as 0‘9~,-9 is found to give the perturbation energy density for waves on a 
stationary basic state (this is a consequence of the basic variational principle 
being Hamilton’s principle). But 9 = 0 and 

(2.12) 9 ( a ,  w ,  k; A)  = 9 ( u ,  w’ + U .  k, k; A). 
Thus 9@ = Ywt = E/w’,  
finally giving ( 1.6) from (2.8). 

3. The energy exchange 
If there were no interaction between the waves and the basic state of the 

medium, then the energy of a group of waves would be conserved and the energy 
equation would be equation (1.5). Now (1.6) may be written 

dE E dw’ 
-+EV.c--- = O 
at 0‘ at 

and so - (E/w’)dw’/dt in some way represents the interaction between the 
waves and the basic flow. But dw‘ldt is given by ( l . l O ) ,  and so (3.1) becomes 

For everytypeof wavemotion that has been studied in detail, it turns out that, 
for a basic state satisfying the requirements of slow variation mentioned in 0 1, 
DA‘/Dt satisfies an equation of the form 

1 Dh’ au. -~ h, Dt +A..--2 = 0 ,  
a9 axi 

where Rij is a tensor independent of U and its derivatives. Thus 
dE au. -++V.c+Tj+ = O 
at axi 

(3.3) 

(3.4) 

and the rate of loss of wave energy within a volume, each point of which moves 
with the group velocity, may be equated to the rate of working, against the rate 
of strain of the basic flow, of an interaction stress tensor Ti3., given by 

For particular types of wave propagation, the components of Tii occurring in 
the energy equation for waves in a basic flow satisfying the requirements of slow 
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variation may be identified with the corresponding colnponents of Sii, the 
radiation stress tensor for the waves. This is defined as the second-order mean of 
the flux in the i direction of j momentum for a uniform plane wave. 

Section 4 will be devoted to a derivation, from the equations of motion, of an 
energy equation for internal gravity waves in a fairly general basic flow. This 
will be shown to be equivalent to (1.6), and the version of (3.3) for this problem 
will be derived. However, it  will be seen that the interaction tensor contains 
a term additional to those a t  first expected in Sij. In  $ 5  this extra term will be 
explained in terms of asomewhat unsuspected contribution to the radiation stress. 

4. Internal gravity waves in a shear flow 
We shall now consider the propagation of internal gravity waves in an in- 

compressible stratified fluid with a slowly varying basic state specified by a 
density field p(z, t ) ,  velocity field U = ( U ( x ,  y , z , t ) ,  V ( x ,  y , z , t ) ,  W ( z , t ) )  and 
pressure p ( x ,  y ,  z, t ) .  x, y are horizontal co-ordinates and z is measured vertically 
upwards. It seems that if we were to allow W to depend on x, y as well as z, then 
requirements of slow variation would require awlax and aW/ay to be O(e2) 
compared with a Wjaz, and so negligible to our approximation, where e is a small 
parameter expressing the ratio of a wavelength or period to the length or time 
scales of the basic flow. The basic velocity field as given above thus seems to be 
the most general which we may usefully take; it is rather artificial but will help us 
to understand the energy exchange. As pointed out by Bretherton (1966)) who 
considered internal gravity wave propagation in a shear flow ( U ( z ) ,  V(z ) ,  0)) the 
Richardson number N2/ (U$+ V:) must be large if the requirements of slow 
variation are to be satisfied. 

The governing equations for the basic state are 

p DU/Dt - p g  + V p  = 0, 

v.u = 0) 

DplDt = 0, (4.3) 

where g = (0, 0, -9 ) .  We now consider perturbations 6, rr, u = (u, u, w )  of the 
density, pressure and velocity fields. 6 gives rise to a perturbation buoyancy 
force b = qS/p, but making the Boussinesq approximation we neglect other terms 
involving 6. The linearized perturbation equations are then 

p @ + w g ) + p b + n z  = 0, 

v.u = 0)  

(4.4) 

(4.51 
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where DIDt = (a /at )  + U . V as before, and N is the local Brunt-Vaisala frequency 
given by 

The solution of these equations may be investigated by the standard W.K.B. 
method, involving an asymptotic expansion of the full solution in powers of E .  

The first approximation, giving the locally uniform plane wave of relative fre- 
quency w' and wave-number k = (k, 1, m),  is given by the solution of equations 
(4.4) to (4.8), ignoring the terms involving derivatives of U and treating U, p as 
constant. Then, if 

u,b ,n  = Re(uo,bo,noexp[i(k.x-wt)]), (4.10) 

we have 

and 

N ( k 2  + Z2)i 

(k2+ l2 + m2)) 
o - U . k = w ' =  

I uo = kn0/pw', 

vo = lno/pw', 

( k2 + 12) r0 wo = - 
pmw' ' 

(4.11) 

(4.12) 

The local energy density E is given by 
- 

E = Qu2 + &p(b"/N2), (4.13) 

where the bar denotes the average over a local period. Then 

E = t p (uo(2+ tp ( (bo12 /N2) .  (4.14) 

The following relations, which we shall use shortly, are easily verified from the 
above solution for a plane wave: 

56 = c'E, 

- Ekc; 
PU2 = 7, 

pv2 = -$ , - Elc' 

- Emc; + E ,  pw2 = ___ 
w' 

- Ekci Elc; puv = ~ -- - 
w ' w' ' 

- Ekc' Emc; Ekm puw = 3 = ~ -__ 
w ' w' k2 + 12' 

- Elc; EmcH Elm pvw = ~ = __-___ 
w ' W I  lC2+12'  

(4.15) 
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As a group of waves, described locally by the plane wave solution above, 
moves through the basic state with the group velocity, changes in o, k are 
governed by (1.8) and (1.9), where A’ = N .  Changes in amplitude will be governed 
by (1.6), but we shall first check this by deriving an energy equation from (4.4) 
to ( 4 . 8 ) . T a k i n g u x ( 4 . 4 ) + ~ ~ ( 4 . 5 ) + ~ ~ ( 4 . 6 )  andusing (4.3)and(4.7), wehave 

D au, 
(ipu2) +pu,ujc?”i + v . (nu) +pwb = 0. 

(In the second term, of course, awlax = aW/ay = 0.) From (4.8), 

p b  Db 
N 2  Dt 

pwb = -- 

Dt 
Thus (4.16) becomes 

(4.16) 

(4.17) 

(4.18) 

au, p i  DN (4.19) 
D b2 
Dt -(+pu2+ipNp) +V.(nu)+pu&-+---- = 0 

axi N ~ N  Dt a 

We now obtain the energy equation by substituting in (4.19) the values of 
u, b, n appropriate to a local uniform plane wave, and averaging over a period. 
Then, using (4.15), we obtain 

dE Ekjc;au, aw E D N  
at 0 axi az N Dt 
-+EV.c+T-+E-+- -  = 0. (4.20) 

This is not quite the form required by (3.2) (where A‘ = N and as/’/aA’ = o ’ / N )  
for conservation of wave action, but it is readily shown to be equivalent on 
evaluation of N-lDNIDt. For (4.3) is 

aplat + w aplaz = 0, 

and on differentiation with respect to z we obtain 

(4.21) 

(4.22) 

and so N - ~ D N I D ~  = - tawlax. (4.23) 

Thus the last two terms of (4.20) may be written as - (E/N) DN/Dt and so (4.20) 
corresponds to (3.2) and gives conservation of wave action. 

We also note that (4.23) is of the form of (3.3), where 

Ai, = +Si3Sj3. (4.24) 

5. Radiation stress 

written as 

for all components of Tij except T13 and T23, which are undefined as 

The results of $4 show that the interaction tensor E,, defined in $3, may be 

(5.1) Ti, = p u U  2 3  - BE Si3 Sj, 

awlax = awlay = 0. 



Internal gravity waves and shear flow 719 

If we wish to identify Tij with the radiation stress tensor 8.. we must explain a 
contribution - &E to S,,, additional to the Reynolds stress;G. 

Considering a locally uniform plane wave, a surface of constant density has a 
sinusoidal perturbation on it due to the presence of the wave. Because of the 
basic stratification, that part of the fluid displaced upwards to above the mean 
height is heavier than that displaced downwards to below the mean height. 
There is, then, on the average, an excess of mass m, per unit horizontal area, 
above the mean position z of a surface of constant density. We may calculate m 
as follows: if at any time (c, r , [ )  is the displacement associated with the point 
(x, y, z )  then we may say with sufficient accuracy that the particle at a point 
(x, y ,  z + 5') has actually originated from the point (x - 5, y - 7, z + - 5)  and so 
has density corresponding to this. 

Thus 

and it is easily verified from the plane wave solution discussed in $ 4  that this 
gives 

m = +E/g. (5.4) 

So, due to the gravitational field, there is a mean downward force exerted on 
the volume above x ,  greater by +E than it would be without waves. Now the 
radiation stress Sij may be regarded as the j component of the stress exerted, 
across a plane P perpendicular to the i axis, on the material on the positive side 
of P,  due to the presence of the waves. Thus S,, contains a term - gm in addition 
to the Reynolds stress pG2, i.e. 

which is what we set out to show. 
Similarly we may argue that 

s,, = puw-g p(z-lJdC s,' 
= pzLw - pN2G. 

Now k t + l y + m g =  0 (5 .8)  

from the continuity equation for a plane wave, and from the horizontal com- 
ponents of the equation of motion 

Elk = r/l. (5.9) 

Ekm Emc; s,, = pG+- - ~ 

k 2 + 1 2 -  w' 
Thus, using (4.15), 

and similarly 

(5.10) 

(5.11) 
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As already mentioned, TI, and T2, do not occur in the energy equation due 
to the restriction on the basic flow, and S1,, X,, have merely been calculated out 
of interest. It might be expected that the back effect of the waves on the mean 
flow could be considered in terms of the motion generated by a body force 
- a(Sji)/axj, but in fact the correct formulation is more complicated than this 
(see Bretherton 1969). It has also been pointed out to the author by R. W. 
Stewart (private communication) that Xij cannot be regarded as a stress tensor 
in the usual sense, as it is not symmetric. 

The second-order mean pressure associated with a plane wave cannot be 
calculated, but it would not enter the energy equation anyway as V . U = 0. 

The author is indebted to Dr P. P. Bretherton for many discussions arising out 
of the topics of this paper. 
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